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1 Wild Automorphism

2 Curves and Surfaces
B Kahler spaces
B Non-Kahler Surfaces

3 Dimension 3
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Wild Automorphism

Curves and Surfaces
Wild Automorphism Dimension 3



Definition

Let X be a compact complex space.
We will use the analytic Zariski topology on X whose closed sets are all analytic sets.
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Definition

Let X be a compact complex space.
We will use the analytic Zariski topology on X whose closed sets are all analytic sets.

Definition

An automorphism o € Aut(X) is called wild in the sense of Reichstein-Rogalski-Zhang
if for any non-empty analytic subset Z of X satisfying 0(Z) = Z, we have Z = X; or
equivalently, for every point z € X, its orbit {¢"(x) | n > 0} is Zariski dense in X.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.

If o is wild then X is smooth.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.

If o is wild then X is smooth.

o is wild if and only if ¢™ is wild for some m > 1 (and hence for all m > 1).
In particular, a wild automorphism has infinite order.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.

If o is wild then X is smooth.

o is wild if and only if 0™ is wild for some m > 1 (and hence for all m > 1).
In particular, a wild automorphism has infinite order.

Proof.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.

If o is wild then X is smooth.

o is wild if and only if 0™ is wild for some m > 1 (and hence for all m > 1).
In particular, a wild automorphism has infinite order.

Proof.

The singular locus Sing X is an analytic subset of X and stabilised by every
automorphism.
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Basic Properties

Lemma 1
Let X be a compact complex space and let o be an automorphism on X.

If o is wild then X is smooth.

o is wild if and only if 0™ is wild for some m > 1 (and hence for all m > 1).
In particular, a wild automorphism has infinite order.

Proof.
The singular locus Sing X is an analytic subset of X and stabilised by every
automorphism.
If o™ stabilised an analytic subset Z of X, then o stabilises the analytic subset
Ut o(Z) of X.
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More Properties

Proposition 2
Let X be a compact complex manifold with a wild automorphism o.
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More Properties

Proposition 2
Let X be a compact complex manifold with a wild automorphism o.

The Euler-Poincaré characteristic x(Ox) = 0, and the topological Euler number
e(X) = 0.
In particular, X is not rationally connected.
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More Properties

Proposition 2
Let X be a compact complex manifold with a wild automorphism o.

The Euler-Poincaré characteristic x(Ox) = 0, and the topological Euler number
e(X)=0.
In particular, X is not rationally connected.

Let D be a Cartier divisor on X such that 0*D ~ D. Then either |[D| = () or D ~ 0.
In particular, the Kodaira dimension x(X) < 0; if K(X) =0, then Kx ~q 0.
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More Properties

Proposition 2
Let X be a compact complex manifold with a wild automorphism o.
The Euler-Poincaré characteristic x(Ox) = 0, and the topological Euler number
e(X)=0.
In particular, X is not rationally connected.
Let D be a Cartier divisor on X such that ¢*D ~ D. Then either |D| = () or D ~ 0.
In particular, the Kodaira dimension x(X) < 0; if K(X) = 0, then Kx ~q 0.
Suppose that X is Kahler and x(X) = 0. Then the Beauville-Bogomolov (minimal
split) finite étale cover X of X is a product of a complex torus T' and some copies of
Calabi-Yau manifolds C; in the strict sense; a positive power of o lifts to a diagonal
action on X =T x [], C; whose action on each factor is wild.
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Entropy and Dynamical Degrees

Let X be a compact Kahler manifold of dimension n > 1, and f € Aut(X).
Denote by d;(f) the i-th dynamical degree of f, that is, the spectral radius of f*|p.:(x).
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Entropy and Dynamical Degrees

Let X be a compact Kahler manifold of dimension n > 1, and f € Aut(X).
Denote by d;(f) the i-th dynamical degree of f, that is, the spectral radius of f*|Hi,i(X).

The dynamical degrees are log concave, i.e., i — logd;(f) is concave for 1 <i <n — 1.
That is di_l(f)di_;,_l(f) S dz(f)2 for all 1 S ) S n—1.
Hence d;(f) = 1 for one i with 1 < i < n — 1 implies that it holds for all such i.
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Entropy and Dynamical Degrees

Let X be a compact Kahler manifold of dimension n > 1, and f € Aut(X).
Denote by d;(f) the i-th dynamical degree of f, that is, the spectral radius of f*|Hi,i(X).

The dynamical degrees are log concave, i.e., i — logd;(f) is concave for 1 <i <n — 1.
That is di_l(f)di_;,_l(f) S dz(f)2 for all 1 S ) S n—1.
Hence d;(f) = 1 for one i with 1 < i < n — 1 implies that it holds for all such i.

The topological entropy h(f) of a map f is a dynamical invariant.
The classical results of Gromov-Yomdin imply that

h(f) = log g%{di(f)}.

Hence f has zero entropy if and only d;(f) = 1.
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Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kéhler space X admits a wild automorphism.
Then X is isomorphic to a complex torus.
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Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kéhler space X admits a wild automorphism.
Then X is isomorphic to a complex torus.

This is not true if we remove the Kahler condition.
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Conjectures

Conjecture Reichstein-Rogalski-Zhang 2006

Assume that a compact Kéhler space X admits a wild automorphism.
Then X is isomorphic to a complex torus.

This is not true if we remove the Kahler condition.

The following conjecture is a little bit weaker.

Conjecture Oguiso-Zhang 2022

Every wild automorphism ¢ of a compact Kahler space X has zero entropy.
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Known Results

Theorem (Oguiso-Zhang 2022)

Let X be a projective variety over C of dimension < 3. Assume that X admits a wild
automorphism o. Then either X is an abelian variety, or X is a Calabi Yau manifold of
dimension three and o has zero entropy.

@
2
)
2
£
)
2
=
o
£
&
5
<
3
2

8/22



Wild automorphisms on complex tori

Proposition 3

Let X be a complex torus and let o be a wild automorphism on X.
Then o has zero entropy.
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Wild automorphisms on complex tori

Proposition 3
Let X be a complex torus and let o be a wild automorphism on X.
Then o has zero entropy.

Proof.

Write o0 = T}, o a for some translation 7} and a € End(X).

Since o is wild, it can be shown that « is unipotent.

Clearly Ty, acts on H(X,C) as an identity.

We claim that the action of the unipotent o € End(X) on H'(X,C) is also unipotent.
In fact, End(X)g := End(X) ® Q is contained in M2, (Q),

and the homomorphism End(X)g — GL(H'(X,C)) preserves unipotency.

Therefore, di(0) = 1 and o has zero entropy. O
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Q-torus

A compact complex space X is called a Q-torus if

> it has a complex torus 17 as an étale finite cover; or equivalently,
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Q-torus

A compact complex space X is called a Q-torus if
> it has a complex torus 17 as an étale finite cover; or equivalently,

> it is the quotient of a complex torus 75 by a finite group acting freely on T5.
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Q-torus

A compact complex space X is called a Q-torus if
> it has a complex torus 17 as an étale finite cover; or equivalently,

> it is the quotient of a complex torus 75 by a finite group acting freely on T5.

Proposition 4
Let X be a Q-torus with a wild automorphism ¢. Then X is a complex torus.
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Q-torus

A compact complex space X is called a Q-torus if
> it has a complex torus 17 as an étale finite cover; or equivalently,

> it is the quotient of a complex torus 75 by a finite group acting freely on T5.

Proposition 4
Let X be a Q-torus with a wild automorphism ¢. Then X is a complex torus.

Proof.

Let T'— X be the minimal splitting cover of X.

Then o lifts to an automorphism on T, also denoted as o.

Note that the o on T normalises H = Gal(T/X).

Hence 0" centralises every element of H, where r := |H|.

Since o™ is still wild, H consists of translations.

Hence H = {idr} by the minimality of 7' — X.

Therefore, X =T and X is a complex torus. O

o
=

©
'__.'

Wild Automorphism

10/22



Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let o be an automorphism on X.
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Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let o be an automorphism on X.
Suppose that ¢ is wild and f: X — Y (resp. g: W — X with ¢g(Sing(W)) # X)
is a o-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.
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Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let o be an automorphism on X.
Suppose that o is wild and f: X — Y (resp. g: W — X with ¢(Sing(W)) # X)
is a o-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.
Suppose that f: X — Y is a o-equivariant surjective morphism to a compact
complex space Y. If the action o on X is wild then so is the action of o on Y (and
hence Y is smooth).

]
2
)
2
£
n
2
o
e
o
£
&
5
<
L
2

11/22



Wild automorphisms and fibrations

Lemma 5
Let X be a compact complex space and let o be an automorphism on X.

Suppose that o is wild and f: X — Y (resp. g: W — X with ¢(Sing(W)) # X)
is a o-equivariant surjective morphism of compact complex spaces.
Then f (resp. g) is a smooth morphism.

Suppose that f: X — Y is a g-equivariant surjective morphism to a compact
complex space Y. If the action o on X is wild then so is the action of o on Y (and
hence Y is smooth).

Suppose that f: X — Y is a o-equivariant generically finite surjective morphism of
compact complex spaces. Then the action of o on X is wild if and only if so is the
action of ¢ on Y.

Further, if this is the case, then f: X — Y is a finite étale morphism, and in
particular, it is an isomorphism when f is bimeromorphic.
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A technical lemma

Lemma 6

Let X be a compact Kahler manifold with a wild automorphism o, let A be a complex
torus and let f: X — A be a o-equivariant surjective projective morphism with
connected fibres of positive dimension. Assume general fibres of f are isomorphic to F.
Suppose that a positive power 0% of o4 fixes some big (1,1)-class o on A in HY(A)
(this holds if dim A = 1 or a positive power of 04 is a translation on A).

Then — K is not a big divisor.
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MRC

A maximal rational connected (MRC) fibration on a uniruled compact Kahler manifold
has general fibres I rationally connected, and the base is not uniruled.
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MRC

A maximal rational connected (MRC) fibration on a uniruled compact Kahler manifold
has general fibres I rationally connected, and the base is not uniruled.

Lemma 7

Let X be a uniruled compact Kahler manifold of dimension > 1, with a wild
automorphism o. Then we can choose the maximal rationally connected (MRC) fibration
X — Y to be a well-defined o-equivariant surjective smooth morphism with

0 < dimY < dim X. Further, the action of o on Y is also wild.
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Curves and Surfaces

Curves and Surfaces
Wild Automorphism Dimension 3



Kahler spaces

Let X be a compact Kahler space of dimension < 2. Assume that X admits a wild
automorphism o. Then X is a complex torus, and o has zero entropy.
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Kahler spaces

Theorem 8

Let X be a compact Kahler space of dimension < 2. Assume that X admits a wild
automorphism o. Then X is a complex torus, and o has zero entropy.

Proof.

Note that X is smooth and x(X) < 0.
When dim X = 1, X is an elliptic curve.
When dim X = 2, we have
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Kahler spaces

Theorem 8

Let X be a compact Kahler space of dimension < 2. Assume that X admits a wild
automorphism o. Then X is a complex torus, and o has zero entropy.

Proof.
Note that X is smooth and x(X) < 0.
When dim X = 1, X is an elliptic curve.
When dim X = 2, we have
> K(X) = —o0: X admits a smooth fibration f: X — Y, with fibres F' smooth
rational curve and Y an elliptic curve. But then F' has ample — K, a contradiction.
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Kahler spaces

Theorem 8

Let X be a compact Kahler space of dimension < 2. Assume that X admits a wild
automorphism o. Then X is a complex torus, and o has zero entropy.

Proof.
Note that X is smooth and x(X) < 0.
When dim X = 1, X is an elliptic curve.
When dim X = 2, we have
> K(X) = —o0: X admits a smooth fibration f: X — Y, with fibres F' smooth
rational curve and Y an elliptic curve. But then F' has ample — K, a contradiction.
> k(X)=0: X is either a complex torus or a hyperelliptic surface. Then X is a
complex torus.
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Non-Kahler surfaces

Proposition 9

Let X be a compact complex surface which is not Kahler. Suppose that X has a wild

automorphism o. Then X is an Inoue surface of type S](J), and ¢ has zero entropy.
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Non-Kahler surfaces

Proposition 9

Let X be a compact complex surface which is not Kahler. Suppose that X has a wild
automorphism o. Then X is an Inoue surface of type S](\}r), and ¢ has zero entropy.
Proof.

By a result of Cantat, any automorphism of a non-Kahler surface has zero entropy.
The surface X has to be minimal.

class of the surface X R(X) a(X) hi(X) ba(X) e(X)
surfaces of class VII —00 0,1 1 >0 >0
primary Kodaira surfaces 0 1 3 4 0
secondary Kodaira surfaces 0 1 1 0 0
properly elliptic surfaces 1 1 >0
Finally, we conclude that X must be an Inoue surface of type S](J). OJ



Inoue surfaces

An Inoue surface X is a compact complex surface obtained from W :=H x C as a
quotient by an infinite discrete group, where H is the upper half complex plane. Inoue
surfaces are minimal surfaces in class VII, contain no curve, and have the following
numerical invariants:

a(X)=0, bi(X)=1, b(X)=0.

There are three families of Inoue surfaces: Sy, S](J), and S](\;).
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Type Sy

Let M = (m; ;) € SL3(Z) be a matrix with eigenvalues «, 3, 5 such that o > 1 and

B # B. Take (a1,a2,a3)” to be a real eigenvector of M corresponding to «, and

(b1, b2,b3)T an eigenvector corresponding to 3. Let G be the group of automorphisms
of W generated by

gO(w7Z) = (Oé’lU,,BZ),
gi(w,z) = (w+a;,z+b;), 1=1,2,3,

which satisfy these conditions

mg,1 Mg 2 M43

gogz‘go =391 92 93
9i9; = 9i9i, 1,5 =1,2,3.

Note that Gy = G1 % G where

G1={g"g5?g5* |mi €2} = 7% and Go = (go) ~ Z.
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It can be shown that the action of Gj; on W is free and properly discontinuous. 17/22



Type S}’

Let M € SLy(Z) be a matrix with two real eigenvalues « and 1/« with o > 1. Let
(a1,a2)” and (b1, b2)” be real eigenvectors of M corresponding to a and 1/,
respectively, and fix integers p1, pa,7 (r # 0) and a complex number 7. Define (cy,c2)”
to be the solution of the following equation

(I — M) <C1> _ (€1> n biraz — baaq <p1> ,
co €2 r D2

where
o 1 1 ]
2 € = Qmi,l(mi,l — Darby + §mi,2(mi,2 — D)agby + m;1miobras, i=1,2.
| Let Gg\;) be the group of analytic automorphisms of W = H x C generated by
5 go: (w,z) — (aw, z + 1),
g gi:(w,z)l—)(w+ai,z+biw+ci), 7;:1727
£
g bras — baa
E gg:(w,z)|—>(w,z+M>.
5 r
=

The action of G(J) is free and properly discontinuous. 18/22



Type S},

Let M € GL2(Z) be a matrix with two real eigenvalues o and —1/a with oo > 1. Let
(a1,a2)” and (b1, b2)” be real eigenvectors of M corresponding to a and 1/,
respectively, and fix integers p1, pa,7 (r # 0) and a complex number 7. Define (cy,c2)”
to be the solution of the following equation

(I + M) (01) _ <€1> n biag — baay (p1> ’
C2 ) T b2

where
o 1 1 ]
2 € = Qmi,l(mi,l — Darby + §mi,2(mi,2 — D)agby + m;1miobras, i=1,2.
| Let Gg\;) be the group of analytic automorphisms of W = H x C generated by
% go: (wa Z) — (OZ’UJ, _2)7
g gi:(waz)'_>(w+aiyz+biw+c’i)v 7;:1727
£
g bras — baa
E gg:(w,z)|—>(w,z+M>.
5 r
=

The action of G(n;) is free and properly discontinuous. 19/22



Auxiliary
Let M € GL,(Z) be a diagonalisable matrix where n = 2 or 3. Assume that M has
either
> two real eigenvalues a (# £1) and 1/ or —1/cx, when n = 2; or
> three eigenvalues o (# £1), B and B (3 # 3), when n = 3.
Denote

I'={N € GL,(Z) | N and M are simultaneously diagonalisable}.

Then T' ~ U x Z where U is a finite group. In particular, if we denote by M% the
subgroup of T' generated by M, then the quotient I'/M% is finite.
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Auxiliary
Let M € GL,(Z) be a diagonalisable matrix where n = 2 or 3. Assume that M has
either

> two real eigenvalues o (# £1) and 1/ or —1/av, when n = 2; or
> three eigenvalues o (# £1), 5 and 5 (8 # (), when n = 3.
Denote

I'={N € GL,(Z) | N and M are simultaneously diagonalisable}.

Then T' ~ U x Z where U is a finite group. In particular, if we denote by M% the
subgroup of T' generated by M, then the quotient I'/M% is finite.

Theorem 10

Let X be an Inoue surface.

)

» If X is of type Sy or S(\; , then the automorphism group Aut(X) is finite.

]
2
)
2
£
n
2
o
e
o
£
&
5
<
L
2

cu, 22



Aucxiliary
Let M € GL,(Z) be a diagonalisable matrix where n = 2 or 3. Assume that M has
either
> two real eigenvalues a (# £1) and 1/ or —1/cx, when n = 2; or
» three eigenvalues a (# £1), B and 3 (3 # 3), when n = 3.
Denote

I'={N € GL,(Z) | N and M are simultaneously diagonalisable}.

Then T' ~ U x Z where U is a finite group. In particular, if we denote by M% the
subgroup of T' generated by M, then the quotient I'/M% is finite.

Theorem 10

Let X be an Inoue surface.

> If X is of type Sy or S(_), then the automorphism group Aut(X) is finite.

» If X is of type S(J) then the neutral connected component Autg(X) of the

automorphism group Aut(X) is isomorphic to C* and the group of components
Aut(X)/ Auto(X) is finite.
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Dimension 3

Curves and Surfaces
Wild Automorphism Dimension 3



Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical
divisor and finite fundamental group.
In particular, H'(X, Ox) = 0 and Pic®(X) is trivial.
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Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical
divisor and finite fundamental group.
In particular, H'(X, Ox) = 0 and Pic®(X) is trivial.

Theorem 11

Let X be a compact Kahler space of dimension three, and let ¢ be a wild automorphism
of X. Then
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Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical
divisor and finite fundamental group.

In particular, H'(X,0x) = 0 and Pic’(X) is trivial.

Theorem 11

Let X be a compact Kahler space of dimension three, and let ¢ be a wild automorphism
of X. Then

X is either a complex torus or a weak Calabi-Yau threefold;
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Dimension 3

A weak Calabi-Yau manifold X is a complex projective manifold with torsion canonical
divisor and finite fundamental group.

In particular, H'(X,0x) = 0 and Pic’(X) is trivial.

Theorem 11

Let X be a compact Kahler space of dimension three, and let ¢ be a wild automorphism
of X. Then

X is either a complex torus or a weak Calabi-Yau threefold;

o has zero entropy.
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Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.

By a result of Miyaoka(1987), we have co(X) - D > 0 for each nef Cartier divisor D on X.
Moreover, by Kobayashi(1987), c2(X) # 0, and thus, c2(X) - H > 0 for every ample
Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let c2(X) be the second Chern class of X.
Assume that either

22/22



Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.

By a result of Miyaoka(1987), we have co(X) - D > 0 for each nef Cartier divisor D on X.
Moreover, by Kobayashi(1987), c2(X) # 0, and thus, c2(X) - H > 0 for every ample
Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let c2(X) be the second Chern class of X.
Assume that either

c2(X) - D > 0 for every non-torsion nef Cartier divisor D on X; or
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Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.

By a result of Miyaoka(1987), we have co(X) - D > 0 for each nef Cartier divisor D on X.
Moreover, by Kobayashi(1987), c2(X) # 0, and thus, c2(X) - H > 0 for every ample
Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let c2(X) be the second Chern class of X.
Assume that either

c2(X) - D > 0 for every non-torsion nef Cartier divisor D on X; or

there exists a non-torsion semi-ample Cartier divisor D on X such that
co(X)- D =0.
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Now we consider a weak Calabi-Yau threefold X.
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Assume that either
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there exists a non-torsion semi-ample Cartier divisor D on X such that
c2(X)-D =0.

]
2
)
2
£
n
2
o
=
o
£
&
5
<
L
2

22/22



Weak Calabi-Yau threefolds

Now we consider a weak Calabi-Yau threefold X.

By a result of Miyaoka(1987), we have co(X) - D > 0 for each nef Cartier divisor D on X.
Moreover, by Kobayashi(1987), c2(X) # 0, and thus, c2(X) - H > 0 for every ample
Cartier divisor H.

Proposition 12

Let X be a weak Calabi-Yau threefold, and let c2(X) be the second Chern class of X.
Assume that either

c2(X) - D > 0 for every non-torsion nef Cartier divisor D on X; or
there exists a non-torsion semi-ample Cartier divisor D on X such that
c2(X)-D =0.

Then X has no wild automorphism.
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Thanks for your attention!
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