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Introduction

The focus of this talk will be on the density of rational points on an algebraic variety, after a finite extension of
the base field.

This talk is based on the following joint work.

[JSZ21]

Potential density of projective varieties having an int-amplified endomorphism,
Jia Jia, Takahiro Shibata and De-Qi Zhang,

arXiv:2108.11595
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Potential density of varieties admitting int-amplified endomorphisms



K-rational points

Let K be a number field.
Let X be the subvariety of A% defined by of polynomials with coefficients in K:

fi(xr, s %) = folxas s %g) = -0 = (31,0, %) = 0.

Then a K-rational point on X is an n-tuple (ay, ...,a,) € K" such that fi(ay,...,a,) = - = fu(ay,...,a,) = 0.

When K = Q, the rational points of the unit circle of equation x? + y? = 1 are the pairs of rational numbers
+ -, -
c ¢

For a scheme X over a field k, its k-rational points (denoted by X(k)) is the set of points x € X such that
k(x) := O, /m, = k. Equivalently, a k-rational point of X can be identified with a section of the structure
morphism X — Speck.

where (a, b, ¢c) is a Pythagorean triple.
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Potential density

A variety X defined over a number field K is said to satisfy potential density (PD) if there is a finite field
extension K C L such that X;(L) is Zariski dense in X, where Xp := X Xgpcx Spec L.

> Rational points of P" are dense over Q.

> Consider the curve
X:{x2+y2+22:O}C]Pé.

Although X(Q) = @, rational points are potentially dense. Over Q(i) one has
X—— sC={x>+y? =2} +—— P!
[x :y:zl———[x: y:iz]

[2st @ s — 1% = s + 2] ——[s : t]
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More examples

Proposition

Let X --» Y be a dominant rational map of projective varieties over a number field. Assume that X satisfies
PD, then so dose Y.
In particular, PD is a birational property.

Unirational varieties over a number field satisfy PD.

Theorem (Chevalley-Weil)

Let X — Y be an étale morphism of proper varieties over a number field. Assume that Y satisfies PD, then so

does X.

Proposition

Let A be an abelian variety over a number field K. After passing to a finite extension L/K, there is an
L-rational point p on A such that Zp = {np | n € Z} is dense.

Abelian varieties over a number field satisfy PD.
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Non-examples

Theorem (Faltings 1983)
Let C be a curve of genus > 2 over a number field K. Then C(K) is finite.

Let X be a variety with a dominant rational map X --» C to a curve of genus > 2 over a number field. Then X
does not satisfy PD.

Conjecture (Lang-Bombieri)

Let X be a projective variety of general type defined over a number field. Then rational points on X are not
potentially dense.

The above conjecture holds for subvarieties of abelian varieties which are of general type (Faltings).
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Uniruled and rationally connected variety

A variety X is said to be ruled if it is birational to U x P'. We say that X is uniruled if X is dominated by a ruled
variety of the same dimension.

We say that a proper variety X over a field k is rationally connected if there exist a variety Y and a rational map
e: P! xY ——» X such that the rational map

P! xP!xY --» Xx X, (t,t',y) — (e(t, ), e(t'y))
is dominant.

When k is algebraically closed of characteristic zero, if X is rationally connected, then any two closed points of
X are connected by an irreducible rational curve over k.

The converse holds when k is also uncountable.

> Unirational varieties, (klt) Fano varieties are rationally connected.

> Rationally connected varieties are uniruled.
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Special variety and PD

An algebraic variety is special if it does not admit a fibration of general type in the sense of [Campana,
Orbifolds, special varieties and classification theory, 2.41].

> A variety of general type is NOT special.
> A curve is special iff its genus is 0 or 1.
> A surface with no finite étale cover which dominates a positive-dimensional variety of general type, is special.

> Rationally connected varieties are special.

v

Algebraic varieties with vanishing Kodaira dimension are special.

Conjcture (Campana)

Let X be a smooth projective variety defined over a number field. Then X is special iff X satisfies PD.
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Int-amplified endomorphism and PD

A surjective morphism f : X — X of a projective variety is called int-amplified if there exists an ample Cartier
divisor H on X such that f*H — H is ample.

Conjecture 1 (Potential density under int-amplified endomorphisms).

Let X be a projective variety defined over a number field K. Suppose that X admits an int-amplified
endomorphism. Then X satisfies potential density.
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Why int-amplified

> Let f: X — X be an int-amplified endomorphism of a normal projective variety X.

either X is Q-abelian (= finite quasi-étale cover of an abelian variety = x =0 = special),
or X is uniruled:

X is rationally connected (= special), or
special maximal rationally connected fibration to a lower dimension Q-abelian variety.

> We may run minimal model program equivariantly on such X (Meng and Zhang).

> Let X = X; x C, where X is any smooth projective variety and C is any smooth projective curve of genus at
least 2. Such X does not satisfy PD.
Let f be a surjective endomorphism of X. After iteration, it has the form

(x1, %) > (g1, x2), %)

for some morphism g : X; x C — X; (Sano). Hence, f descends to the identity map idc on C via the natural
projection X — C. Such an f is not int-amplified.

> and,
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Conjecture 2 (Zariski dense orbit conjecture = ZDO).

Let X be a variety defined over an algebraically closed field k of characteristic zero and f : X --» X a dominant
rational map. Then one of the following holds:

(1) the f*-invariant function field k(X)S is non-trivial, that is, k(X)I = k; or
(2) there exists some x € X(k) whose f-orbit Of(x) := {f"(x) | n > 0} is well-defined and Zariski dense.

> (X, f) with X being a curve (Amerik);
> (X, f) with X being a projective surface and f an endomorphism (Xie, Zhang and J.);
> (X, f) with X being an abelian variety and f an endomorphism (Ghioca and Scanlon).

Lemma 3.

Let X be a projective variety over K, f : X — X a surjective morphism, and Z C X a subvariety which satisfies PD
(e-8. Z is an abelian variety or unirational). If O¢(Z) is Zariski dense, then X satisfies PD.

Let X be a projective variety overk and f : X — X an int-amplified endomorphism. Then k(X) =k. In
particular, if ZDO holds for (X, f), then there exists some x € X(k) such that O¢(x) is Zariski dense in X.
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Main Results

Proposition 5.

Let X be a rationally connected projective variety over K. Suppose that dim X < 3 and X admits an int-amplified
endomorphism. Then X satisfies potential density.

> either we have a Zariski dense orbit; or

> take x € X(K) with maximal dim(Z := Of(x)) =r < dim X.
pick an f-fixed point y € X(K) \ Z, and a rational curve C connecting x and y.
either W := O7(C) = X; or
dimW =r,thenW =Zu{JW, = y € f*(C) C Z, a contradiction; or
r < dimW < dim X, then some irreducible W’ C W is f-invariant and dimW’ > r.
apply ZDO to (W’, flw) to find some w with dim Of(w) >r.
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Main Results

Proposition 6.

Let X be a non-uniruled projective variety over K. Suppose that X admits an int-amplified endomorphism. Then X
satisfies PD.

After lifting to normalisation, X is Q-abelian (Sheng) = 3 dense orbit.

Theorem 7.

Let X be a normal projective variety over K with at worst Q-factorial klt singularities. Suppose that dim X < 3 and
X admits an int-amplified endomorphism. Then X satisfies PD.

Essentially, only need to consider uniruled but not rationally connected threefold, with Kx not being
pseudo-effective.

Then run EMMP which end with a Fano contraction: base and general fibre have dimension 1 or 2.

Jia Jia (NUS)



Zariski density of points with maximal arithmetic degree



Preliminaries

Let X be a projective variety and f: X — X a surjective morphism.

The first dynamic degree of f is the limit
d\(f) = lim ((f")"H - HEmX-1Um
n—oo

where H is an ample Cartier divisor on X.

Fix a (logarithm) height function hg > 1 associated to an ample Cartier divisor H on X. For x € X(K), the
arithmetic degree of f at x is the limit

af() = lim by (/"G

Remark (Kawaguchi and Silverman; Matsuzawa)

The inequality 1 < a¢(x) < d;(f) holds for all x € X(K).
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small Arithmetic Non-Density

Conjecture (SAND; Matsuzawa, Meng, Shibata and Zhang,)

Let X be a projective variety over a number field K, f: X — X a surjective morphism, and d > 0 a positive
integer. Then the set

Zs(d) = {x € X(K) | [K(x) : K] < d.af(x) < di(f)}
is not Zariski dense.
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Let L be an intermediate field: K C L C K. We say that (X, f) has densely many L-rational points with the
maximal arithmetic degree (DR) if there is a subset S C X(L) satisfying the following conditions:

(1) Sis Zariski dense in X ;
(2) the equality a¢(x) = d;(f) holds for all x € S; and
(3) Of(x1) n Of(xz) = @ for any pair of distinct points x;, x € S.

We say that (X, f) satisfies (DR) if there is a finite field extension K C L (C K) such that (X, f) satisfies (DR);.

Let X be a projective variety over a number field K satisfying PD and f : X --» X a dominant rational map
over K with d;(f) > 1. Does (X, f) satisfy (DR)?

When d;(f) = 1, all points have maximal arithmetic degree. But the question is not trivial.
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Known results

Let K be a number field. Let X be a projective variety over K and f : X — X a surjective morphism with

d(f)> 1.

Theorem (Sano and Shibata)

> If X is unirational, then (X, f) satisfies (DR)g.
> If X is abelian, then (X, f) satisfies (DR).
> If X is a smooth projective surface satisfying PD, then (X, f) satisfies (DR).
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Main results

Let X be a normal projective surface over K satisfying PD, and let f : X — X be a surjective morphism with
di(f) > 1. Then (X, f) satisfies (DR).

Theorem 9.

Let X be a rationally connected smooth projective threefold over K, and let f : X — X be an int-amplified
endomorphism. Then (X, f) satisfies (DR).
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Questions?
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