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A group G is Jordan if it has “almost” abelian finite subgroups:

there is a constant J, such that every finite subgroup H of G has a (normal) abelian subgroup Hs
with the index [H : Hi] < J.

It is named after:

Theorem (C. Jordan, 1878)
The general linear group GL,(C) is Jordan.

Jordan’s theorem has been generalised to

Theorem (Boothby-Wang, 1964)
Any connected Lie group is Jordan.
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Jordan Property for Automorphisms Groups

Question (Popov)
Is the (biholomorphic) automorphism group Aut(X) Jordan for

- an algebraic manifold (variety)?

- a compact complex manifold (space)?
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Known results:

Theorem
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- (Meng-Zhang, 2018) projective manifold (variety) X, and
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Jordan Property for Automorphism Groups

Theorem (Prokhorov-Shramov, 2021)
Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.
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Jordan Property for Automorphism Groups

Theorem (Prokhorov-Shramov, 2021)
Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki's class C if it is the meromorphic image of a compact Kahler
manifold.

Theorem (Meng-Perroni-Zhang, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is Jordan.

Idea: Aut(X)"|;p(x,q) has bounded finite subgroups:

T — Aut,(X) — Aut(X) — Aut(X)" o) — 1-

Lemma
Aut(X) is Jordan iff so is Aut,(X).
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Jordan Property for Automorphism Groups

Let Auto(X) be the neutral component of Aut(X). Then
Auto(X) < Aut-(X).
Fix a big (1,1)-class [a] € H"'(X,R).

Autpo)(X) = {g € Aut(X) | g"[a] = [a]} > Aut,(X).

Theorem (Meng-J, 2022)
[Auti(X) : Auto(X)] < co.

So Aut(X)/ Auto(X) has bounded finite subgroups and hence

Lemma
Aut(X) is Jordan iff so is Auto(X).
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T-Jordan Property

Theorem (Lee, 1976)
Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion
subgroup H of G contains a (normal) abelian subgroup H of index [H : Hi] < T.
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T-Jordan Property

Theorem (Lee, 1976)
Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion

subgroup H of G contains a (normal) abelian subgroup H of index [H : Hi] < T.

For any group G satisfies the theorem above, we say that G has the T-Jordan property.

Using the equivariant Kahler model for Fujiki’s class, we proved

Theorem (Meng-J, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is T-Jordan.
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Basic Properties

Lemma
Consider the exact sequence of groups:

1—N—G— H.

- If N'is T-Jordan and H has bounded torsion subgroups, then G is T-Jordan.

- Assume that the exact sequence is also right exact. If N is a torsion group and G is T-Jordan,
then H is T-Jordan.
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Minimal Surfaces

A smooth compact complex surface is called minimal, if it does not contain any (—1)-curve.
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Minimal Surfaces

A smooth compact complex surface is called minimal, if it does not contain any (—1)-curve.

Theorem
Every smooth compact complex surface has a minimal model.

Proposition
Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique
minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary

Let X be a non-Kahler compact complex surface. Then there is a unique minimal model X’
bimeromorphically equivalent to X and

Aut(X) < Bim(X) = Bim(X') = Aut(X).
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Kahler Surfaces

Table 1: Kahler minimal smooth compact complex surfaces

class of the surface X ‘ &(X) a(X) b1 (X) e(X)
rational surfaces —00 2 0 3,4
ruled surfaces of genus g >1 | —oo 2 29 4(1—9g)
complex tori 0 0,1,2 4 0

K3 surfaces 0 0,1,2 0 24
Enriques surfaces 0 2 0 12
bielliptic surfaces 0 2 2 0
properly elliptic surfaces 1 2 0 mod 2 >0
surfaces of general type 2 2 0 mod 2 >0
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Non-Kahler Surfaces

Table 2: non-Kahler minimal smooth compact complex surfaces

class of the surface X ‘ k(X) a(X) by (X) b,(X) e(X)
surfaces of class VII —oco 0,1 1 >0 >0
primary Kodaira surfaces 0 1 3 4 0
secondary Kodaira surfaces 0 1 1 0 0
properly elliptic surfaces 1 1 = 1mod 2 >0
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Algebraic Reduction

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma
Any compact complex surface of algebraic dimension 1 is elliptic.
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Algebraic Reduction

Let X be a compact complex surface of algebraic dimension a(X) = 1.
Lemma
Any compact complex surface of algebraic dimension 1 is elliptic.
This elliptic fibration 7: X — Yis called the algebraic reduction of X.
Lemma

The algebraic reduction w: X — Y of X is Aut(X)-equivariant.

Proof.

For g € Aut(X), the image of a fibre F of = under g is another fibre; otherwise the self-intersection
number of g(F) + F is positive and hence X is projective. A compact complex surface is projective
iff its algebraic dimension is 2. O
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Class VIl Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number by = 1 and Kodaira dimension x = —oo.
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Class VIl Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number by = 1 and Kodaira dimension x = —oo.

Class VIl surfaces with b, = 0 are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)
Any class Vlly surface with b, = 0 is biholomorphic to either a Hopf or an Inoue surface.

A Hopf surface is a quotient of the form C? \ {0}/I, where I acts properly and discontinuously on

C*\ {o}.

An Inoue surface is a quotient of the form H x C/I', where H is the upper half plane, and I is a
solvable group of affine transformations of the complex plane leaving invariant and acting properly
and discontinuously on H x C.
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Some Notation

We use the following notation:

- Let X be the set of smooth compact complex surface X in class VIl with the algebraic
dimension a(X) = 0 and the second Betti number b,(X) > 0.

- Let Xy C X be those minimal surfaces which have no curve.
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Main Results

Proposition 1
Let X be a smooth compact complex surface not in Xo. Then Aut(X) is T-Jordan.
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Main Results

Proposition 1
Let X be a smooth compact complex surface not in Xo. Then Aut(X) is T-Jordan.

Proposition 2
Let X be a smooth compact complex surface in Xo. Let G < Aut(X) be a torsion subgroup. Then G
is virtually abelian.

Combine the two propositions above:

Let X be a smooth compact complex surface. Then any torsion subgroup G < Aut(X) is virtually
abelian.
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Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 — Aut™(X) — Aut(X) — Aut(X)|ppog) — 1-

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X,Q)) is finite.

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X,Q)) is finite.

By passing to a finite index subgroup, may assume G < Aut™*(X).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X,Q)) is finite.
By passing to a finite index subgroup, may assume G < Aut™*(X).

Pickid # g € G, and let G’ be the centraliser of {(g) in G.

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X, Q)) is finite.
By passing to a finite index subgroup, may assume G < Aut™*(X).

Pickid # g € G, and let G’ be the centraliser of {(g) in G.

Since g has finite order, [G : G'] is finite.

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X, Q)) is finite.
By passing to a finite index subgroup, may assume G < Aut™*(X).

Pickid # g € G, and let G’ be the centraliser of {(g) in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G’, may assume g € Z(G).

15/27



Sketch Proof of Proposition 2:
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We only consider the case that X does not have any curves.
1T — Aut*(X) — AUt(X) — AUt(X)|H*(X7Q) — 1.

Let G < Aut(X) be an infinite torsion subgroup. The image of G in GL(H*(X, Q)) is finite.
By passing to a finite index subgroup, may assume G < Aut™*(X).

Pickid # g € G, and let G’ be the centraliser of {(g) in G.

Since g has finite order, [G : G'] is finite.

Replacing G by the finite-index subgroup G’, may assume g € Z(G).

The fixed point set Fix(g) of g is finite with cardinality | Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index < b,(X)!, may assume G fixes some point x € Fix(g).

The torsion group G is embedded into GL,(C).
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GSS Conjecture

Conjecture
For an arbitrary minimal class VII surface with b, positive the following are equivalent:

1. It has a cycle of rational curves;
2. It has at least b, rational curves;

3. It contains a global spherical shell.
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GSS Conjecture

Conjecture
For an arbitrary minimal class VII surface with b, positive the following are equivalent:

1. It has a cycle of rational curves;
2. It has at least b, rational curves;

3. It contains a global spherical shell.

Remark
Assume the GSS conjecture. Let X be a smooth compact complex surface. Then Aut(X) is T-Jordan.
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Tits Alternative

Theorem (Tits)
For any subgroup G < GL,(C), either

- G contains a free non-abelian subgroup, or

- G contains a solvable subgroup of finite index.
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Tits Alternative

Theorem (Tits)
For any subgroup G < GL,(C), either
- G contains a free non-abelian subgroup, or

- G contains a solvable subgroup of finite index.

Known results:

Theorem (Campana-Wang-Zhang, 2013)

Let X be a compact Kahler manifold and G < Aut(X) a subgroup. Then either G > Z «Z or G is
virtually solvable.
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Main Result

Theorem 2
Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.
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Main Result

Theorem 2
Let X be a compact complex space in Fujiki's class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: Aut(X)*|z.q) < GL(H*(X, Q)) satisfies the Tits alternative.

T — Aut-(X) — Aut(X) — Aut(X) g — 1

Then Aut(X) satisfies the Tits alternative iff so does Aut-(X).

There is a bimeromorphic holomorphic map X —» X from a compact Kihler manifold X such that
Aut(X) lifts to X holomorphically.

View Aut,(X) < Aut(X) as a subgroup. Note that X’ is kahler and Aut(X’) satisfies the Tits
alternative.
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Main Result

Another point of view: By the result of [Meng-J, 2022],
[Aut-(X) : Auto(X)] < oo.

Then Aut(X) satisfies the Tits alternative iff so does Auto(X).
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Main Result

Another point of view: By the result of [Meng-J, 2022],
[Aut-(X) : Auto(X)] < oo.

Then Aut(X) satisfies the Tits alternative iff so does Auto(X).

Ad: Auto(X) — GL(TAuto(X),e)> ker Ad = Z(Auto(X))

1T — Z(AUto(X)) — AUto(X) — GI—(TAutO(X),e) — 1.
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Kato Surfaces

A spherical shell in a complex surface X is an open subset U C X which is biholomorphic to a
standard neighbourhood of S? in C%. A spherical shell U C X is called global if X\ U is connected.
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Kato Surfaces

A spherical shell in a complex surface X is an open subset U C X which is biholomorphic to a
standard neighbourhood of S? in C%. A spherical shell U C X is called global if X\ U is connected.

A Kato surface is a minimal class VIl surface with b, > 0 which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class
VIl surface with b, > 0 is a Kato surface.
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Enoki Surfaces

Theorem (Enoki, 1980/81)
An EnoRi surface is biholomorphic to a compactification of a holomorphic affine line bundle over
an elliptic curve.
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an elliptic curve.

Let X be a P'-bundle over an elliptic curve with an infinity section Co (but possibly with no zero
section) with C2, = —n. Then the complement of Co in X can be uniquely compactified into a class
VIl surface S with by(S) = n by replacing C with a cycle of n-rational curves. This S is an Enoki

surface.
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Enoki Surfaces

Theorem (Enoki, 1980/81)
An EnoRi surface is biholomorphic to a compactification of a holomorphic affine line bundle over

an elliptic curve.
Let X be a P'-bundle over an elliptic curve with an infinity section Co (but possibly with no zero

section) with C2, = —n. Then the complement of Co in X can be uniquely compactified into a class
VIl surface S with by(S) = n by replacing C with a cycle of n-rational curves. This S is an Enoki

surface.
If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a
parabolic Inoue surface.
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Main Result

Let X be a smooth compact complex surface.
Assume that either X ¢ ¥, or X € ¥ but its minimal model is an Enoki surface or Inoue-Hirzebruch
surface.

Then Aut(X) satisfies the Tits alternative.
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Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by
¥ =6,6" =16,q],---,6"" =6V, 6.

By definition, G = 1 for some integer p > 0 if and only if G is solvable. We call the minimum of
such p the derived length of G (when G is solvable) and denote it by £(G). If G is not solvable,
we set £(G) = oo
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Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by
¥ =6,6" =16,q],---,6"" =6V, 6.

By definition, G = 1 for some integer p > 0 if and only if G is solvable. We call the minimum of
such p the derived length of G (when G is solvable) and denote it by £(G). If G is not solvable,
we set £(G) = oo

If G is virtually solvable, we then define the virtual derived length to be

lvir(G) = ngl/n (G

where G’ run through all finite-index subgroups of G.
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Basis Properties

Lemma
Consider the short exact sequence of groups:

1T—N-—G—H—1.

- If N is solvable and H is virtually solvable, then G is virtually solvable with

evir(G) S E(N) aF Zvir(H)‘
- If N is finite and H is virtually solvable, then G is virtually solvable with £yi:(G) < £yix(H) + 1.
- G is virtually solvable iff both N and H are virtually solvable.
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Basis Properties

Lemma
Consider the short exact sequence of groups:

1T—N-—G—H—1.

- If N is solvable and H is virtually solvable, then G is virtually solvable with
Lvir (G) < L(N) + Luix(H).
- If N is finite and H is virtually solvable, then G is virtually solvable with £yi:(G) < £yix(H) + 1.
- G is virtually solvable iff both N and H are virtually solvable.
- If both N and H satisfy the Tits alternative, then so does G.

2427



Known Results

Let X be a compact Kahler manifold. For a subgroup G of Aut(X), define G° := G N Auto(X).

25/27



Known Results

Let X be a compact Kahler manifold. For a subgroup G of Aut(X), define G° := G N Auto(X).
Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kahler manifold of dimension n > 1. Then every subgroup G < Aut(X) of zero
entropy has a finite index subgroup G’ < G such that £(G'/G”®) < n —1.
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Known Results

Let X be a compact Kahler manifold. For a subgroup G of Aut(X), define G° := G N Auto(X).
Theorem (Dinh-Lin-Oguiso-Zhang, 2022)

Let X be a compact Kahler manifold of dimension n > 1. Then every subgroup G < Aut(X) of zero
entropy has a finite index subgroup G’ < G such that £(G'/G”®) < n —1.

The invariant £(G'/G"®) does not depend on the choice of G/, and it is called the essential
derived length of the subgroup G < Aut(X).
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Main Result

Let X be a smooth compact complex surface.

Assume that either X ¢ ¥, or X € ¥ but its minimal model is an Enoki surface or Inoue-Hirzebruch
surface.

Let G < Aut(X) be a virtually solvable subgroup. Then the virtually derived length 4vi(G) < 4.

26/27



Remark

1. Currently, we are not able to prove Theorems 3 & 4 in full generality for X € X.

2. Kato surfaces consist of four subclasses: Enoki surfaces (including parabolic Inoue surfaces),
half Inoue surfaces, Inoue-Hirzebruch surfaces and intermediate surfaces.

3. Fix b > 0. The moduli space of framed Enoki surfaces with b, = b is an open subset of the
moduli space of framed Kato surfaces with b, = b.

4 When X is a parabolic Inoue surface, it has been proved that Aut(X) is virtually abelian.
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Questions?
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