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T-Jordan Property



Jordan Property

Definition
A group G is Jordan if it has “almost” abelian finite subgroups:

there is a constant J, such that every finite subgroup H of G has a (normal) abelian subgroup H1

with the index [H : H1] ≤ J.

It is named after:

Theorem (C. Jordan, 1878)
The general linear group GLn(C) is Jordan.

Jordan’s theorem has been generalised to

Theorem (Boothby-Wang, 1964)
Any connected Lie group is Jordan.
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Jordan Property for Automorphisms Groups

Question (Popov)
Is the (biholomorphic) automorphism group Aut(X) Jordan for

• an algebraic manifold (variety)?
• a compact complex manifold (space)?

Known results:

Theorem
Aut(X) is Jordan for

• (Meng-Zhang, 2018) projective manifold (variety) X, and
• (J. Kim, 2018) compact Kähler manifold (variety) X.
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Jordan Property for Automorphism Groups

Theorem (Prokhorov-Shramov, 2021)
Let X be a smooth compact complex surface. Then the automorphism group Aut(X) of X is Jordan.

A compact complex space is in Fujiki’s class C if it is the meromorphic image of a compact Kähler
manifold.

Theorem (Meng-Perroni-Zhang, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is Jordan.

Idea: Aut(X)∗|H2(X,Q) has bounded finite subgroups:

1 −→ Autτ (X) −→ Aut(X) −→ Aut(X)∗|H2(X,Q) −→ 1.

Lemma
Aut(X) is Jordan iff so is Autτ (X).
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Jordan Property for Automorphism Groups

Let Aut0(X) be the neutral component of Aut(X). Then

Aut0(X) ≤ Autτ (X).

Fix a big (1, 1)-class [α] ∈ H1,1(X,R).

Aut[α](X) := {g ∈ Aut(X) | g∗[α] = [α]} ≥ Autτ (X).

Theorem (Meng-J, 2022)
[Aut[α](X) : Aut0(X)] < ∞.

So Aut(X)/Aut0(X) has bounded finite subgroups and hence

Lemma
Aut(X) is Jordan iff so is Aut0(X).
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T-Jordan Property

Theorem (Lee, 1976)
Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion
subgroup H of G contains a (normal) abelian subgroup H1 of index [H : H1] ≤ T.

For any group G satisfies the theorem above, we say that G has the T-Jordan property.

Using the equivariant Kähler model for Fujiki’s class, we proved

Theorem (Meng-J, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is T-Jordan.

6/27



T-Jordan Property

Theorem (Lee, 1976)
Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion
subgroup H of G contains a (normal) abelian subgroup H1 of index [H : H1] ≤ T.

For any group G satisfies the theorem above, we say that G has the T-Jordan property.

Using the equivariant Kähler model for Fujiki’s class, we proved

Theorem (Meng-J, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is T-Jordan.

6/27



T-Jordan Property

Theorem (Lee, 1976)
Let G be a connected Lie group. Then there is a constant T = T(G) such that every torsion
subgroup H of G contains a (normal) abelian subgroup H1 of index [H : H1] ≤ T.

For any group G satisfies the theorem above, we say that G has the T-Jordan property.

Using the equivariant Kähler model for Fujiki’s class, we proved

Theorem (Meng-J, 2022)
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) is T-Jordan.

6/27



Basic Properties

Lemma
Consider the exact sequence of groups:

1 −→ N −→ G −→ H.

• If N is T-Jordan and H has bounded torsion subgroups, then G is T-Jordan.
• Assume that the exact sequence is also right exact. If N is a torsion group and G is T-Jordan,
then H is T-Jordan.
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Minimal Surfaces

A smooth compact complex surface is called minimal, if it does not contain any (−1)-curve.

Theorem
Every smooth compact complex surface has a minimal model.

Proposition
Let X be a minimal surface. Suppose that X is neither rational nor ruled. Then X is the unique
minimal model in its class of bimeromorphic equivalence, and Bim(X) = Aut(X).

Corollary
Let X be a non-Kähler compact complex surface. Then there is a unique minimal model X′

bimeromorphically equivalent to X and

Aut(X) ≤ Bim(X) = Bim(X′) = Aut(X′).
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Kähler Surfaces

Table 1: Kähler minimal smooth compact complex surfaces

class of the surface X κ(X) a(X) b1(X) e(X)

rational surfaces −∞ 2 0 3, 4
ruled surfaces of genus g ≥ 1 −∞ 2 2g 4(1− g)
complex tori 0 0, 1, 2 4 0
K3 surfaces 0 0, 1, 2 0 24
Enriques surfaces 0 2 0 12
bielliptic surfaces 0 2 2 0
properly elliptic surfaces 1 2 ≡ 0 mod 2 ≥ 0
surfaces of general type 2 2 ≡ 0 mod 2 > 0
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Non-Kähler Surfaces

Table 2: non-Kähler minimal smooth compact complex surfaces

class of the surface X κ(X) a(X) b1(X) b2(X) e(X)

surfaces of class VII −∞ 0, 1 1 ≥ 0 ≥ 0
primary Kodaira surfaces 0 1 3 4 0
secondary Kodaira surfaces 0 1 1 0 0
properly elliptic surfaces 1 1 ≡ 1 mod 2 ≥ 0
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Algebraic Reduction

Let X be a compact complex surface of algebraic dimension a(X) = 1.

Lemma
Any compact complex surface of algebraic dimension 1 is elliptic.

This elliptic fibration π : X −→ Y is called the algebraic reduction of X.

Lemma
The algebraic reduction π : X −→ Y of X is Aut(X)-equivariant.

Proof.
For g ∈ Aut(X), the image of a fibre F of π under g is another fibre; otherwise the self-intersection
number of g(F) + F is positive and hence X is projective. A compact complex surface is projective
iff its algebraic dimension is 2.
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Class VII Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number b1 = 1 and Kodaira dimension κ = −∞.

Class VII surfaces with b2 = 0 are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)
Any class VII0 surface with b2 = 0 is biholomorphic to either a Hopf or an Inoue surface.

A Hopf surface is a quotient of the form C2 \ {0}/Γ, where Γ acts properly and discontinuously on
C2 \ {0}.

An Inoue surface is a quotient of the form H× C/Γ, where H is the upper half plane, and Γ is a
solvable group of affine transformations of the complex plane leaving invariant and acting properly
and discontinuously on H× C.

12/27



Class VII Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number b1 = 1 and Kodaira dimension κ = −∞.

Class VII surfaces with b2 = 0 are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)
Any class VII0 surface with b2 = 0 is biholomorphic to either a Hopf or an Inoue surface.

A Hopf surface is a quotient of the form C2 \ {0}/Γ, where Γ acts properly and discontinuously on
C2 \ {0}.

An Inoue surface is a quotient of the form H× C/Γ, where H is the upper half plane, and Γ is a
solvable group of affine transformations of the complex plane leaving invariant and acting properly
and discontinuously on H× C.

12/27



Class VII Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number b1 = 1 and Kodaira dimension κ = −∞.

Class VII surfaces with b2 = 0 are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)
Any class VII0 surface with b2 = 0 is biholomorphic to either a Hopf or an Inoue surface.

A Hopf surface is a quotient of the form C2 \ {0}/Γ, where Γ acts properly and discontinuously on
C2 \ {0}.

An Inoue surface is a quotient of the form H× C/Γ, where H is the upper half plane, and Γ is a
solvable group of affine transformations of the complex plane leaving invariant and acting properly
and discontinuously on H× C.

12/27



Class VII Surfaces

Recall that surfaces of class VII are those smooth compact complex surfaces with the first Betti
number b1 = 1 and Kodaira dimension κ = −∞.

Class VII surfaces with b2 = 0 are classified:

Theorem (F. A. Bogomolov, 1970; A. Teleman, 1994)
Any class VII0 surface with b2 = 0 is biholomorphic to either a Hopf or an Inoue surface.

A Hopf surface is a quotient of the form C2 \ {0}/Γ, where Γ acts properly and discontinuously on
C2 \ {0}.

An Inoue surface is a quotient of the form H× C/Γ, where H is the upper half plane, and Γ is a
solvable group of affine transformations of the complex plane leaving invariant and acting properly
and discontinuously on H× C.

12/27



Some Notation

We use the following notation:

• Let Σ be the set of smooth compact complex surface X in class VII with the algebraic
dimension a(X) = 0 and the second Betti number b2(X) > 0.

• Let Σ0 ⊆ Σ be those minimal surfaces which have no curve.
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Main Results

Proposition 1
Let X be a smooth compact complex surface not in Σ0. Then Aut(X) is T-Jordan.

Proposition 2
Let X be a smooth compact complex surface in Σ0. Let G ≤ Aut(X) be a torsion subgroup. Then G
is virtually abelian.

Combine the two propositions above:

Theorem 1
Let X be a smooth compact complex surface. Then any torsion subgroup G ≤ Aut(X) is virtually
abelian.
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Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



Sketch Proof of Proposition 2:

We only consider the case that X does not have any curves.

1 −→ Aut∗(X) −→ Aut(X) −→ Aut(X)|H∗(X,Q) −→ 1.

Let G ≤ Aut(X) be an infinite torsion subgroup. The image of G in GL(H∗(X,Q)) is finite.

By passing to a finite index subgroup, may assume G ≤ Aut∗(X).

Pick id ̸= g ∈ G, and let G′ be the centraliser of ⟨g⟩ in G.

Since g has finite order, [G : G′] is finite.

Replacing G by the finite-index subgroup G′, may assume g ∈ Z(G).

The fixed point set Fix(g) of g is finite with cardinality |Fix(g)| = b2(X).

Consider the action of G on the finite set Fix(g).

Replacing G by a subgroup of index ≤ b2(X)!, may assume G fixes some point x ∈ Fix(g).

The torsion group G is embedded into GL2(C).

15/27



GSS Conjecture

Conjecture
For an arbitrary minimal class VII surface with b2 positive the following are equivalent:

1. It has a cycle of rational curves;
2. It has at least b2 rational curves;
3. It contains a global spherical shell.

Remark
Assume the GSS conjecture. Let X be a smooth compact complex surface. Then Aut(X) is T-Jordan.
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Tits Alternative



Tits Alternative

Theorem (Tits)
For any subgroup G ≤ GLn(C), either

• G contains a free non-abelian subgroup, or
• G contains a solvable subgroup of finite index.

Known results:

Theorem (Campana-Wang-Zhang, 2013)
Let X be a compact Kähler manifold and G ≤ Aut(X) a subgroup. Then either G ≥ Z ∗ Z or G is
virtually solvable.
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Main Result

Theorem 2
Let X be a compact complex space in Fujiki’s class C. Then Aut(X) satisfies the Tits alternative.

Sketch proof: Aut(X)∗|H2(X,Q) ≤ GL(H2(X,Q)) satisfies the Tits alternative.

1 −→ Autτ (X) −→ Aut(X) −→ Aut(X)∗|H2(X,Q) −→ 1

Then Aut(X) satisfies the Tits alternative iff so does Autτ (X).

There is a bimeromorphic holomorphic map X̃ −→ X from a compact Kähler manifold X̃ such that
Autτ (X) lifts to X̃ holomorphically.

View Autτ (X) ≤ Aut(X′) as a subgroup. Note that X′ is kähler and Aut(X′) satisfies the Tits
alternative.
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Main Result

Another point of view: By the result of [Meng-J, 2022],

[Autτ (X) : Aut0(X)] < ∞.

Then Aut(X) satisfies the Tits alternative iff so does Aut0(X).

Ad: Aut0(X) −→ GL(TAut0(X),e), ker Ad = Z(Aut0(X)).

1 −→ Z(Aut0(X)) −→ Aut0(X) −→ GL(TAut0(X),e) −→ 1.
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Kato Surfaces

A spherical shell in a complex surface X is an open subset U ⊆ X which is biholomorphic to a
standard neighbourhood of S3 in C2. A spherical shell U ⊆ X is called global if X \ U is connected.

A Kato surface is a minimal class VII surface with b2 > 0 which contains a global spherical shell.

By a result of Dloussky, Oeljeklaus and Toma, the GSS conjecture implies that every minimal class
VII surface with b2 > 0 is a Kato surface.
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Enoki Surfaces

Theorem (Enoki, 1980/81)
An Enoki surface is biholomorphic to a compactification of a holomorphic affine line bundle over
an elliptic curve.

Let X be a P1-bundle over an elliptic curve with an infinity section C∞ (but possibly with no zero
section) with C2

∞ = −n. Then the complement of C∞ in X can be uniquely compactified into a class
VII surface S with b2(S) = n by replacing C∞ with a cycle of n-rational curves. This S is an Enoki
surface.
If X also has the zero section, then S has an elliptic curve. In the second case we call the surface a
parabolic Inoue surface.
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Main Result

Theorem 3
Let X be a smooth compact complex surface.

Assume that either X /∈ Σ, or X ∈ Σ but its minimal model is an Enoki surface or Inoue-Hirzebruch
surface.

Then Aut(X) satisfies the Tits alternative.
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Virtual Derived Length

Given a group G, its p-th derived subgroups are inductively defined by

G(0) = G,G(1) = [G,G], · · · ,G(i+1) = [G(i),G(i)].

By definition, G(p) = 1 for some integer p ≥ 0 if and only if G is solvable. We call the minimum of
such p the derived length of G (when G is solvable) and denote it by ℓ(G). If G is not solvable,
we set ℓ(G) = ∞.

If G is virtually solvable, we then define the virtual derived length to be

ℓvir(G) = min
G′

ℓ(G′)

where G′ run through all finite-index subgroups of G.
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Basis Properties

Lemma
Consider the short exact sequence of groups:

1 −→ N −→ G −→ H −→ 1.

• If N is solvable and H is virtually solvable, then G is virtually solvable with
ℓvir(G) ≤ ℓ(N) + ℓvir(H).

• If N is finite and H is virtually solvable, then G is virtually solvable with ℓvir(G) ≤ ℓvir(H) + 1.
• G is virtually solvable iff both N and H are virtually solvable.
• If both N and H satisfy the Tits alternative, then so does G.
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Known Results

Let X be a compact Kähler manifold. For a subgroup G of Aut(X), define G0 := G ∩ Aut0(X).

Theorem (Dinh-Lin-Oguiso-Zhang, 2022)
Let X be a compact Kähler manifold of dimension n ≥ 1. Then every subgroup G ≤ Aut(X) of zero
entropy has a finite index subgroup G′ ≤ G such that ℓ(G′/G′0) ≤ n− 1.

The invariant ℓ(G′/G′0) does not depend on the choice of G′, and it is called the essential
derived length of the subgroup G ≤ Aut(X).
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Main Result

Theorem 4
Let X be a smooth compact complex surface.

Assume that either X /∈ Σ, or X ∈ Σ but its minimal model is an Enoki surface or Inoue-Hirzebruch
surface.

Let G ≤ Aut(X) be a virtually solvable subgroup. Then the virtually derived length ℓvir(G) ≤ 4.
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Remark

Remark

1. Currently, we are not able to prove Theorems 3 & 4 in full generality for X ∈ Σ.
2. Kato surfaces consist of four subclasses: Enoki surfaces (including parabolic Inoue surfaces),

half Inoue surfaces, Inoue-Hirzebruch surfaces and intermediate surfaces.
3. Fix b > 0. The moduli space of framed Enoki surfaces with b2 = b is an open subset of the

moduli space of framed Kato surfaces with b2 = b.
4. When X is a parabolic Inoue surface, it has been proved that Aut(X) is virtually abelian.
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Questions?
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Thank you!
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